Domestic Service Robots - iRobot Roomba vaccuming robot
Domestic service robots have long been a staple of science fiction and commercial visions of the future. The robot V.I.C.I in the mid -80’s TV show Small Wonder and Issac Isimov’s book I,Robot which was consequently made into a movie bear testimony to the same. Commercially too, this area has evoked a lot of interest with most big universities and research organizations devoting huge resources to the development of their own robot for different applications. But the question is how soon will robots become part of our day-to-day lives. According to the International Federation of Robotics, about two million personal robots were in use around the world in 2004, and another seven million will be installed by 2008. In
Most commonly these imaginaries take the form of humanoid assistants capable of performing multiple tasks and engaging in fairly sophisticated communication and interaction with people. But more recently, an entire new range of robots are being developed which do not take the humanoid form and focus on specific applications such as the iRobiq and Robomovers discussed in this blog.
One such popular robot is the iRobot Roomba vacuuming robot. The Roomba is a “robotic floor vac” capable of moving about the home and sweeping up dirt as it goes along. The Roomba is a logical merging of vacuum technology and intelligent technology. The Roomba undertakes three types of cleaning, using two rotating brushes that sweep the floor, a vacuum that sucks dust and particles off the floor, and side sweeping brushes to clean baseboards and walls. Infrared signals are used to determine the Roomba’s current location in a room, and to ensure that it does not fall down stairs or off of raised floors. A set of sensors is also used to determine dirty places on the carpet that need more attention. The Roomba returns to a self charging home base after the floor is clean or when it needs to recharge. Typically, it can clean about three 14 x 16 foot rooms before doing so. Inexpensive contact sensors or infrared sensors are most frequently used, along with simple heuristics to follow random motion patterns. The Roomba navigates a space based upon a predetermined pattern. However, this pattern is altered whenever the Roomba bumps into an obstacle and it changes its course. This introduces important variability in the Roomba’s movement and helps to achieve greater coverage. But one major disadvantage or drawback with this robot is that unlike most conventional robots it is not capable of planning or learning and at times needs human intervention to help clean inaccessible areas.
Author: Vignesh Ramachandran
Matric Number: U037024R
References:
1.Service Robots in the Domestic Environment: A Study of the Roomba Vacuum in the Home - Jodi Forlizzi et al
3.Sizing and seizing the robotics opportunity